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We consider finite-amplitude Kelvin waves on an inviscid vortex assuming that the vortex core has infini-
tesimal thickness. By numerically solving the governing Biot-Savart equation of motion, we study how the
frequency of the Kelvin waves and the velocity of the perturbed ring depend on the Kelvin wave amplitude. In
particular, we show that, if the amplitude of the Kelvin waves is sufficiently large, the perturbed vortex ring
moves backwards.
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I. INTRODUCTION

Vortex rings are among the most important and most stud-
ied objects of fluid mechanics �1,2�. It has been known since
the times of Lord Kelvin �3� that a vortex ring is subject to
wavy distortions �sinusoidal displacements of the vortex
core� called Kelvin waves �4�. In the case of viscous vortex
rings, the stability of these waves is a problem with subtle
aspects �5� which are still the focus of intense mathematical
scrutiny �6�. Our concern is the simpler case in which the
fluid is inviscid and the vortex core has infinitesimal thick-
ness. This case refers to the idealized context of classical
Euler fluids, but is realistic for superfluids, which have zero
viscosity and microscopic vortex core thickness.

Vortex rings have indeed been central to superfluidity �7�
since the pioneering experiments on the nucleation of quan-
tized vorticity by moving ions �8�, the early investigations
into rotons as ghosts of vanished vortex rings �9�, and the
nature of the superfluid transition �10�. The current interest in
superfluid vortex rings extends to the physics of cold atomic
gases �11� and the discovery of new nonlinear solutions �12�
of the Gross-Pitaevskii’s nonlinear Schroedinger equation
�NLSE� for a Bose-Einstein condensate. Vortex rings are also
important in the study of superfluid turbulence �13�. For ex-
ample, they have been used as tools to study the Kelvin wave
cascade �14� which is responsible for the dissipation of tur-
bulent kinetic energy near absolute zero, and to investigate
the effects of vortex reconnections �15�, which are the key
feature of turbulence; they are also used as simple models of
the vortex loops which make up the turbulence �16�.

Kelvin waves play a role in all examples listed above. The
dispersion relation of Kelvin waves of infinitesimal ampli-
tude A on a circular vortex ring of given radius R, circulation
�, and vortex core radius a is �17�

� =
�

2�a2�1 −�1 + ka
K0�ka�
K1�ka�

� , �1�

where � is the angular velocity of the wave and k the wave
number. Functions Kn�x� are modified Bessel functions of
order n. The above dispersion relation is also valid for waves
on a straight vortex �18�. The properties of small-amplitude
Kelvin waves have been already investigated �19�, but little
is known of what happens at large wave amplitude. The sta-

bility problem becomes nonlinear, hence more difficult, and
a numerical approach is necessary.

Recently, an astonishing prediction was made by
Kiknadze and Mamaladze �20� that, at sufficiently large am-
plitude, the perturbed vortex ring moves backwards. Unfor-
tunately the prediction arises from numerical analysis based
on the local induction approximation �LIA� to the exact
equation of motion, which is the Biot-Savart law �BSL�. The
advantage of the LIA over the BSL is that it is analytically
simpler and computationally cheaper. If N is the number of
discretization points along a vortex filament, the cost of the
computation grows as N under the LIA, whereas under the
BSL it grows as N2. The use of the LIA was pioneered by
Schwarz �22� in his numerical studies of homogeneous iso-
tropic turbulence. His results obtained using the LIA com-
pared reasonably well with results obtained using the BSL,
because long-range effects tend to cancel out in the isotropy
vortex configurations which he considered. In less isotropic
cases, however, for example in rotating turbulence �23�, the
LIA may not be a good approximation. In particular, the LIA
yields wrong predictions about the stability and motion of
vortex knots �24�, structures which are geometrically similar
to �although topological different from� the perturbed vortex
rings considered by Kiknadze and Mamaladze �20�.

Our first aim is thus to use the exact BSL to investigate
the claim of Kiknadze and Mamaladze that the perturbed
vortex ring can move backwards �20�. Our second aim is to
carry out a more detailed examination of the effects of large-
amplitude Kelvin waves on the motion of a vortex ring.

II. MODEL

Our approach is based on the vortex filament model of
Schwarz �22� which is appropriate to superfluid helium due
to the smallness of the vortex core radius a compared to the
radius of the vortex ring R. Essentially, a vortex is treated as
a topological line defect, that is to say a curve in three-
dimensional space. In the absence of dissipation �zero tem-
perature�, the vortex at the point r moves with velocity
dr /dt=vL where vL is equal to the local superfluid velocity
vs that is given by the following Biot-Savart line integral
calculated along the entire vortex configuration
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vs�r,t� =
�

4�
� �s − r� � ds

	s − r	3
. �2�

Here s denotes a variable location along the vortex filament.
To implement the BSL, the vortex configuration is dis-
cretized into a large number of segments. The technique to
handle the singularity that one meets when one tries to evalu-
ate the integral at those discrete points that are used to de-
scribe the vortex line can be avoided by splitting the integral
into local and nonlocal parts �22�. The velocity of a point s
on the vortex is thus

vL =
�

4�
s� � s� ln�2�l+l−

e1/2a
� +

�

4�
�� �s1 − s� � ds1

	s1 − s	3
, �3�

where � is the arc length, the vectors s�=ds /d�, s�
=d2s /d�2 are, respectively, the local tangent and the local
normal to the vortex at the point s. The quantities l− and l+
are the lengths of the line segments connected to the discreti-
zation point s and the prime above the integral symbol means
that the line integration now extends only along the remain-
ing vortex segments. One should note that we use a hollow
core vortex, which results that the scaling factor in front of a
in Eq. �3� is exp�1/2� rather than exp�1/4� which is for a
solid rotating core and appears in a paper by Schwarz �22�.
The recent progress in using the Gross-Pitaevskii nonlinear
Schrödinger equation for quantum fluids suggests that the
hollow core model should be more appropriate �25�. The
exact value of the core size is not important here. What mat-
ters is that it is orders of magnitudes smaller than the radius
of the ring or the amplitude of the waves, so that we can use
the concept of vortex filament. For example, in a typical
helium turbulence experiment the measured vortex line den-
sity L is 104 or 106 cm−2, which means that the intervortex
spacing is 1 /�L=0.01 or 0.001 cm, which is a million or
hundred thousands times bigger than the vortex core radius
�10−8 cm� in 4He.

The local induction approximation �LIA� is obtained by
neglecting the nonlocal part and is typically written in the
form

vL = �s� � s�, �4�

where �=� ln�c
R� /a� /4�, 
R� is some average curvature,
and c is of order unit; the last two parameters are adjusted to
obtain better agreement with full nonlocal calculations. By
choosing c=8 exp�−1/2� and 
R� to be the local radius of
curvature one obtains fairly good results and additionally a
limit that gives correctly the velocity for the perfect ring.

The calculation of the kinetic energy E of the vortex
would not be accurate if carried out on a three-dimensional
mesh around the vortex due to rapid changes of the velocity
field near the vortex core. Fortunately in our case the vortex
filament forms a closed loop and the velocity field goes to
zero at infinity �the calculation is performed in an infinite
box�, hence it is appropriate �26� to use Saffman’s formula
�2�

E = ��s� vs · s � ds , �5�

where the line integration is performed along the vortex fila-
ment and �s is the superfluid density.

The initial condition consists of a vortex ring of radius R
with superimposed N Kelvin waves of amplitude A �that is,
the wavelength of the perturbation is 2�R /N�. Using cylin-
drical coordinates r, �, and z, the Cartesian coordinates of
the initial vortex ring are thus

x = R cos � + A cos�N��cos � ,

y = R sin � + A cos�N��sin � ,

z = − A sin�N�� . �6�

In the absence of Kelvin waves �A=0� the circular vortex
ring moves in the positive z direction with self-induced trans-
lational speed �27�

vring =
�

4�R
�ln�8R/a� − 1/2� . �7�

We have tested that, in the case of a circular ring, our nu-
merical method agrees fairly well with this result.

All results presented here are obtained using ring radius
R=0.1 cm and values of a and � which refer to 4He ��
=h /m4=9.97�10−4 cm2/s, where m4 is the mass of one
atom, and a=1.0�10−8 cm�. The dependence of the results
on a is small, since a appears only in the slow varying loga-
rithmic term in Eq. �3�.

The numerical method to evolve the perturbed vortex ring
under the BSL is based on a fourth-order Runge-Kutta
scheme. The spatial discretization is typically 	� /R=0.02
and the time step 	t=0.5�10−3 s. The time step is well
below the one that for a given space resolution provides
stable motion of a circular vortex ring without fluctuations
and resolves the oscillations of the Kelvin waves. Numerical
calculations are also performed using the LIA to compare
against the exact BSL.

We are unable to perform a precise stability analysis of
large-amplitude Kelvin waves under the Biot-Savart Law or
a stability analysis of the Runge-Kutta scheme when applied
to the Biot-Savart motion—both problems are practically im-
possible. We find that for very large times �larger then re-
ported in the following section� the perturbed vortex ring
always breaks up at some point �that is, first deforms and
later possibly attempts to reconnect with itself�. We do not
know whether this fate indicates an instability of the vortex
for large-amplitude Kelvin waves or a numerical instability.
What matters is that the lifetime of the perturbed vortex and
the spatial range that it travels are much larger than the time
scale of the Kelvin oscillations and the size of the ring itself,
because it implies that the results which we describe are
physically significant and observable in a real system.

III. RESULTS

The first result of our numerical simulations is that
Kiknadze and Mamaladze’s prediction �20� obtained using
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the LIA is indeed correct. Integration of the motion using the
exact BSL shows that, provided the amplitude of the Kelvin
waves is large enough, the vortex ring moves �on the aver-
age� backwards. This result is illustrated in Figs. 1 and 2: the
former shows snapshots of the ring at different times as it
travels, the latter gives the average translational velocity of
the ring along the z direction as a function of the amplitude A
of the Kelvin waves. It is apparent that the translational ve-
locity decreases with increasing amplitude of the Kelvin
waves and can even become negative.

At some critical value of the amplitude A the translational
velocity is zero and the perturbed vortex ring hovers like a
stationary helicopter. In the case of N=10 Kelvin waves this
happens when A /R=0.17 approximately, which is quite close
to the LIA prediction, A /R=0.16. For N=6 and N=20 the
critical value is, respectively, A /R=0.32 and A /R=0.085.
This dependence of the critical amplitude on N is in approxi-
mate agreement with the LIA prediction �20�.

The backward velocity of the perturbed vortex ring de-
pends nonlinearly on the amplitude A of the Kelvin waves.
At large enough amplitude A this velocity will slow down.
This can be clearly seen in Fig. 2. The Kelvin waves, that
can be imagined to behave like small vortex rings, tend to
turn backwards, or more precisely, on the direction opposite
to the motion of the unperturbed vortex ring. The larger the
amplitude the larger fraction of the ring velocity is oriented
downwards. This is compensated by the decrease in velocity
of the single ring, which is inversely proportional to the am-

plitude, resulting an optimum value at some amplitude. For
N=20 the optimum amplitude A�0.25R resulting a down-
ward velocity that is already slightly higher than the velocity
upwards of the unperturbed ring.

In addition to Kelvin waves, the translational velocity of
the vortex ring can be reduced by having an additional swirl
velocity along the vortex core. This was considered by Wid-
nall, Bliss, and Zalay �21�. However, this effect does not
matter in our limit of thin-core vortices, which is relevant to
superfluids.

The dispersion relation of large-amplitude Kelvin waves
can be obtained by tracking the motion of the vortex on the
y=0 plane, for example. If the amplitude A of the Kelvin
wave is small, the vortex draws a circle at approximately the
same angular frequency that is obtained analytically for
small-amplitude Kelvin waves and given by Eq. �1�. In the
long wavelength limit �k→0� this relation becomes

� = −
�k2

4�
ln� 2

ka
� − 
� , �8�

where 
=0.5772¯ is Euler’s constant and the negative sign
only indicates that the Kelvin waves rotate opposite to the
circulation. Again the above equation differs slightly �−
 in
stead of 1/4−
� from the form given by Schwarz �22�, but
this is again only due to the definition of the core type.

We find that if we increase the amplitude of the Kelvin
waves on the ring then the angular frequency decreases, a
result which we also verified in the case of a straight vortex.
Some example curves drawn by the vortex on the y=0 plane
are shown in Fig. 3. The average angular frequency is plotted
in Fig. 4, which shows also the dispersion relation of waves
on a straight vortex for comparison.

It is important to notice that, under the LIA used by
Kiknadze and Mamaladze �20� the vortex length remains
constant �22�, whereas the quantity which is conserved under
the exact BSL is the energy. Length and energy are propor-
tional to each other only if the vortex filament is straight,
which is not the case in our problem. Indeed, further inves-
tigation reveals that the vortex motion contains two charac-

FIG. 2. �Color online� Average translational velocity of the vor-
tex ring as a function of the initial oscillation amplitude A /R. Ve-
locity is scaled by the velocity of the unperturbed ring, vring. The
dash-dotted line corresponds to N=20, solid line to N=10, and the
dashed line to N=6 in Eq. �6�. Critical amplitudes, above which the
velocities become negative, are A /R=0.085, 0.17, and 0.32,
respectively.

FIG. 1. �Color online� Snapshots of the vortex ring of radius
R=0.1 cm perturbed by N=10 Kelvin waves of various amplitude
A taken during the motion of the vortex. In the left panel �a� the
amplitude of the Kelvin waves is small, A /R=0.05, but the per-
turbed vortex ring �red color� already moves slower than the unper-
turbed vortex �blue color�. In the center panel �b� the Kelvin waves
have large amplitude, A /R=0.35, and the perturbed vortex ring
moves backwards �negative z direction� on average. The top right
panel �c� shows the top �xy� view of the large amplitude vortex at
t=0 s �blue� and t=26 s �red, outermost�. For comparison, a non-
disturbed vortex is shown with dashed line �green�. The lower right
panel �d� gives the averaged location of the ring as a function of
time. From top to bottom the curves correspond to A /R
=0.0,0.05,0.10, . . . ,0.35.
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teristic frequencies. The first is the Kelvin frequency and the
second is the frequency that is related to the oscillations of
the vortex length and illustrated in Fig. 5. If the ratio of the
two periods is rational one observes a fully periodic motion
�in addition to translational motion along the z axis�. At some
values of the amplitudes which we calculated, this condition
is almost satisfied. At higher values of amplitude one ob-
serves that the average radius of the vortex ring oscillates, as

shown in Fig. 1. These variations in the total length were
observed but not discussed in a recent calculation of the mo-
tion of vortex rings using the NLSE model �28�.

The accuracy of our numerical method is tested by calcu-
lating the energy of the vortex ring. At zero temperature,
without any dissipation, the energy �and the momentum�
should remain constant. This condition can be quite well
satisfied in our calculations. We do get some small oscilla-
tions in energy, as seen in Fig. 5, but we have checked that
by increasing the space resolution we can reduce them at
will, whereas the oscillations in length are independent of the
numerical resolution.

IV. CONCLUSION

It is well known that a circular vortex ring has a transla-
tional velocity which arises from its own curvature �the
smaller the radius R of the ring, the faster the ring travels�.
Using the exact Biot-Savart law, we have analyzed the mo-
tion of a vortex ring perturbed by Kelvin waves of finite
amplitude. We have found that the translational velocity of
the perturbed ring decreases with increasing amplitude; at
some critical amplitude the velocity becomes zero, that is,
the vortex ring hovers like a helicopter. A further increase of
the amplitude changes the sign of the translational velocity,
that is, the vortex ring moves backward. Our finding con-
firms preliminary results obtained by Kiknadze and Mamal-
adze using the local induction approximation �20�.

This remarkable effect is due to the tilt of the plane of the
Kelvin waves which induce motion in the “wrong” direction.
The magnitude of the tilt oscillates and what results is a
wobbly translational motion in the backward direction. We
have also found that the frequency of the Kelvin wave de-
creases with increasing amplitude and that the total length of
the perturbed vortex ring oscillates with time. This oscilla-
tion in vortex length is related to the oscillation of the tilt
angle.

Time of flight measurements of large, electrically charged,

FIG. 3. �Color online� Curve drawn by the vortex at y=0 plane.
Here the z coordinate is the coordinate relative to the average loca-
tion of the vortex and N=10 in Eq. �6�. In the top left panel �a� the
amplitude is A /R=0.05 and in the top right panel �b� A /R=0.20. In
both panels only the first 30 sec are shown. The thickness of the
plotted curve arises from the chaotic motion rather than initial tran-
sient. The bottom panel �c� corresponds to A /R=0.50 and we have
drawn the curve for the first 90 sec. The time step between the
markers is 2 ms; it is apparent that at large amplitudes the vortex is
far from a sinusoidal helix and that the rotational speed at y=0
plane varies significantly.

FIG. 4. �Color online� Main figure: Angular frequency of Kelvin
waves � relative to the value �0 obtained in the small amplitude
limit A /R=0.001 and presented as a function of the wave amplitude
A /R. The dashed line is for N=6, the solid line for N=10, and the
dash-dotted line for N=20. The inset shows the same when plotted
as a function of A /�, where � is the wavelength of the Kelvin wave.
The additional dotted line is the result obtained for straight vortex
when using a wavelength of 0.1 cm together with periodic bound-
ary conditions and using 25 periods above and below to numerically
determine the vortex motion.

FIG. 5. �Color online� The observed vortex length compared
with the initial length L0=2��R2+N2A2 is illustrated by solid
�blue� lines and plotted as function of time in case of N=10. For
comparison, the dashed �red� lines show the fluctuations in energy
that are due to numerical errors and which can be reduced by in-
creasing the space resolution. With increasing amplitude of oscilla-
tions the parameters for A /R shown are 0.20, 0.30, 0.40, and 0.50.
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perturbed vortex rings in 4He could easily detect the de-
creased translational velocity. Another context in which the
effect can be studied is Bose-Einstein condensation in ultra-
cold atomic gases, which allow simple visualization of indi-
vidual vortex structures. For these systems, however, it
would be necessary to assess the effect of the nonhomoge-
neity of the superfluid.
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